# <span id="page-0-0"></span>H<sub>2</sub> Binding and Splitting on a New-Generation [FeFe]-Hydrogenase Model Featuring a Redox-Active Decamethylferrocenyl Phosphine Ligand: A Theoretical Investigation

# Claudio Greco\*

Institut für Chemi[e,](#page-6-0) Humboldt-Universität zu Berlin, Brook-Taylor strasse 2, 12489 Berlin (Germany) and Department of Environmental and Earth Sciences, Universitàdegli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy

### **S** Supporting Information

[AB](#page-6-0)STRACT: [\[FeFe\]-hydro](#page-6-0)genases are dihydrogen-evolving metalloenzymes that are able to combine substrate binding and redox functionalities, a feature that has important bearing on their efficiency. New-generation bioinspired systems such as  $Fe_2[(SCH_2)_2NBr](CO)_3(Cp*Fe(C_5Me_4CH_2PEt_2))(dppv)$  were shown to mimic  $H_2$  oxidation and splitting processes performed by the [FeFe]-hydrogenase/ferredoxin system, and key mechanistic aspects of such reaction are theoretically investigated in the present contribution. We found that  $H_2$  binding and heterolytic cleavage take place concomitantly on DFT models of the synthetic catalyst, due to a substrate-dependent intramolecular redox process that promotes dihydrogen activation. Therefore, formation of an iron− dihydrogen complex as a reaction intermediate is excluded in the



biomimetic system, at variance with the case of the enzyme.  $H_2$  uptake at the synthetic system also requires an energetically disfavored isomerization of the amine group acting as a base during splitting. A possible strategy to stabilize the conformation competent for H2 binding is proposed, along with an analysis of the reactivity of a triiron complex in which di(thiomethyl)amine-the chelating group naturally occurring in [FeFe]-hydrogenases-substitutes the benzyl-containing dithiolate ligand.

# **ENTRODUCTION**

Extensive research efforts are currently devoted to the design and characterization of efficient and green catalytic paths for molecular hydrogen production and splitting.<sup>1</sup> In fact, such reversible reaction might be relevant for development of nextgeneration, ecocompatible approaches for ene[rg](#page-6-0)y storage and utilization. Notably, several microorganisms have an active dihydrogen metabolism in which specific metalloenzymes generally termed hydrogenases play the main role.<sup>2</sup> Three hydrogenase classes are known to date, but only two of them t[he](#page-6-0) [FeFe]- and [NiFe]-hydrogenases-exploit the redox activity of their active site to catalyze the reaction  $H_2 \rightleftharpoons 2H^+$ + 2e<sup>-</sup>; the third class—the [Fe]-hydrogenases—instead requires the presence of an exogenous hydride acceptor to activate  $H_2$ .<sup>3</sup>

[FeFe]-hydrogenases are the most efficient catalysts for biological [ev](#page-6-0)olution of dihydrogen.<sup>4</sup> As suggested by their name, the active site of these enzymes is characterized by the presence of a diiron assembly ([u](#page-6-0)sually termed  $[2Fe]_{\rm H}$ ),<sup>5−7</sup> which is covalently linked to a ferredoxin-like  $Fe_4S_4$  cubane (the so-called  $[4Fe-4S]_H$  subsite, see Figure 1). These [two](#page-6-0) subclusters constitute a  $Fe_6S_6$  site which is conserved in all the [FeFe]-hydrogenases characterized to date and is referred to as the H-cluster. The  $[2Fe]_H$  site is peculiar from a biochemical point of view: it includes a dithiolate bridge



Figure 1. Schematic structures of [FeFe]-hydrogenases active site and of the bioinspired model A (Bn = CH<sub>2</sub>Ph, dppv =  $cis$ -C<sub>2</sub>H<sub>2</sub>(PPh<sub>2</sub>)<sub>2</sub>). Site for  $H_2$  binding and activation in the enzyme active site is highlighted.

between metal ions as well as the biologically unusual carbonyl and cyanide ligands. Recent theoretical and experimental

Received: September 28, 2012 Published: February 1, 2013

results<sup>8</sup> produced convincing evidence of the fact that the dithiolate ligand is actually di(thiomethyl)amine (dtma). The amine [g](#page-6-0)roup of the latter is thought to exert an important role as an acid−base group during catalysis. In fact, it was shown to be able to mediate facile proton transfers toward and from one of the iron atoms of the  $[2Fe]_H$  subsite (see the upper half of Figure 1). Such iron center of the  $[2Fe]_H$  subsite will be referred to as "distal" (Fe<sub>d</sub>, see Figure 1) in order to distinguish it from [th](#page-0-0)e proximal iron ion  $(Fe_p)$  that is relatively closer to th[e](#page-0-0)  $[4Fe-4S]_H$  subsite. The enzyme form ready to accept protons and to start the enzymatic process in the reductive direction is  $H_{\text{red}}$ , which attains the Fe(I)Fe(I) state at the diiron assembly. The form which undergoes  $H_2$  binding is termed  $H_{ox}$ instead, which features a mixed-valence,  $Fe(II)Fe(I)$   $[2Fe]_H$ subsite.<sup>9</sup>

Notably, recent theoretical results indicate that [FeFe] hydrog[en](#page-6-0)ases are able to couple  $H_2$  binding to the bimetallic active site with one-electron oxidation of the latter; $10$  this in turn increases dihydrogen acidity, thus favoring its splitting. Concerted transfers of protons and electrons are als[o e](#page-6-0)xpected to play a crucial role in the  $H^+$  reduction mechanism, leading to  $H_2$  evolution.<sup>9,11</sup> All electron-transfer events toward and from the  $[2Fe]_H$  assembly are mediated by the  $[4Fe-4S]_H$  subsite and by ancillary p[rote](#page-6-0)in-embedded iron−sulfur clusters that usually flank the H-cluster (Figure 2). $9,12$ 



Figure 2. Ribbon representation of [FeFe]-hydrogenase crystal structure form *D. desulfuricans.*<sup>6</sup> Path for electron transfer is highlighted with a transparent red strip. Each metal−sulfur assembly included in the protein matrix is [hig](#page-6-0)hlighted by an arrow.

Given the crucial redox function that these  $Fe<sub>4</sub>S<sub>4</sub>$  cubanes exert, reproduction of their effects in biomimetic complexes represents an important and challenging target for bioinspired synthesis.13−<sup>16</sup> One of the first attempts to install a redox-active group on a biomimetic diiron carbonyl cluster has been reported [by G](#page-6-0)loaguen and co-workers,<sup>13</sup> who synthesized and characterized a species including the 2,3-bis- (diphenylphosphino)maleic anhydri[de](#page-6-0) (bma, see Scheme  $1$ ).<sup>17</sup> With respect to typical phosphine ligands previously used in biomimetic complexes,<sup>18</sup> bma novelty resides in the av[aila](#page-6-0)bility of a low-lying  $\pi^*$  orbital delocalized on the maleic anhydride ring, ready to acc[ep](#page-7-0)t reducing equivalent(s) at relatively mild potentials. However, it was shown that the bma ligand is unable to establish relevant electronic communication with the metal centers in such tetracarbonyl dithiolate-bridged complex, and no proton-induced electron transfers from the

Scheme 1. (Top) Schematic Structure of the Tetracarbonyl Complex Including 2,3-Bis(diphenylphosphino)maleic Anhydride (bma, see inset); (Bottom) Drawing of the Biomimetic Compound Recently Obtained by Camara and Rauchfuss<sup>14a</sup>



a<br>Red arrows illustrate the redox interplay between noninnocent ligand and the Fe<sub>2</sub> core, which is absent in the bma-containing model, at variance with the case of the triiron species.

bma ligand to the diiron core turned out to be possible in this case (Scheme 1, upper half).<sup>13,19</sup>

Density functional theory calculations can give important hints for the design of synt[het](#page-6-0)[ic](#page-7-0) models with enhanced redox properties, as shown recently.<sup>16,19,20</sup> In particular, theory allowed us to propose that installing metallocenes on diiron complexes through a phosphine [bri](#page-6-0)[dge c](#page-7-0)an favor intramolecular electron transfers functional for reversible oxidation of  $H_2$ .<sup>19</sup> Notably, Camara and Rauchfuss recently incorporated a decamethylferrocene derivative on a diiron cluster mimicki[ng](#page-7-0) the [FeFe]-hydrogenases active site.<sup>14</sup> As a result, they obtained the first example of a biomimetic cluster combining redox and substrate binding functionalities, [le](#page-6-0)ading to a remarkable reproduction of the enzyme function. This complex in its neutral form  $(A,$  Figure 1) attains the Fe $(II)$  redox state at the level of the metallocene sandwich, while the diiron subunit is in the Fe(I)Fe(I) state. U[po](#page-0-0)n monoelectronic oxidation  $(A \rightarrow A^+$ + e<sup>−</sup>), the latter subunit shifts to the mixed-valence Fe(II)Fe(I) state, with concomitant terminal to semibridging movement of one of the CO groups in the diiron site. A second oxidation step was shown to correspond to the metallocene/metallocenium couple; the resulting dicationic adduct  $A^{2+}$  is able to bind and split exogenous molecular hydrogen rapidly, much more efficiently than any other all-iron biomimetic complex previously tested for this kind of reactivity.<sup>21,22</sup>

Fifteen years after the first report of [FeFe]-hydrogenases crystal structure,<sup>5</sup> synthesis of a biomimeti[c com](#page-7-0)plex such as  $A$ represents a major breakthrough toward obtainment of a complete functi[on](#page-6-0)al model of this hydrogenase class.<sup>23</sup> In such context, density functional theory not only can provide fundamental insights on the mechanistic aspec[ts](#page-7-0) of the interaction between  $H_2$  and A but also allows us to compare details of the reactivity of the latter and of other bioinspired

species. These are the main aims of the present theoretical investigation, which also reports a comparison between the novel outcomes on A and previous theoretical results on  $H_2$ binding and splitting at the enzyme active site.

#### ■ METHODS

All geometry optimizations, relative energy calculations, prediction of charge transfer events, vibrational frequency computations, and their scaling were carried out using approaches previously applied or specifically developed and validated in our laboratories for the study of hydrogenases models.19,24−<sup>26</sup> In particular, geometry optimizations were based on in-vacuum density functional theory (DFT) calculations<br>carried out using the  [Turbom](#page-7-0)ole program suite<sup>27</sup> at the BP86-RI/ TZVP level,<sup>28</sup> an approach that provides very good performances in terms of reproduction of structural features of h[yd](#page-7-0)rogenases models (see refs 25 [an](#page-7-0)d 29 and vide infra). As far as the atomic composition of the DFT model is concerned, to reasonably reduce the computational cost we decided to locally modify the ligands in A as follows: the bis(diph[eny](#page-7-0)lph[osph](#page-7-0)ino)ethylene moiety bound to one of the Fe centers in A has been replaced with a bis(dimethylphosphino)ethylene ligand. Moreover, the ethyl groups in the trialkylphosphine substituent bound to the metallocene portion of A have been replaced with methyl groups. Calculations on selected models, left unmodified with respect to the original atomic composition of A, showed that the abovedescribed modifications of ligands lead to negligible variation of the overall theoretical picture (see Supporting Information).

For all models, stationary points of the energy hypersurface have been located by means of energy gradient techniques, and full vibrational analyses have been [carried out to further ch](#page-6-0)aracterize each stationary point; spurious imaginary vibrations around or below 20i persisted in some models also after targeted reoptimizations employing the dedicated screwer utility of Turbomole and were therefore ignored as products of numerical inaccuracies.<sup>30</sup> The IR parameters here reported for all-iron models were obtained by scaling the computed BP86-RI/TZVP frequencies according to [a](#page-7-0) method specifically developed for [FeFe]-hydrogenases.<sup>26</sup> Optimization of transition state structures has been carried out according to a procedure based on a pseudo-Newton−Ra[ph](#page-7-0)son method, as<br>previously described.<sup>31</sup> The antiferromagnetic coupling of opposite spins that characterize several of the discussed species has been modeled using the [bro](#page-7-0)ken symmetry (BS) approach.<sup>32</sup> Single-point B3LYP33 calculations at the BP86-RI/TZVP geometry were carried out to compute Mulliken charges and spin populatio[ns](#page-7-0) (also in this case, t[he](#page-7-0) TZVP basis was employed); as shown previously,<sup>19</sup> this approach gives a reliable picture on intramolecular redox events, as the hybrid functional provides superior performance in describing e[lec](#page-7-0)tron delocalization.<sup>34</sup> Electron transfers within models were investigated by computing the overall Mulliken charges and spin populations of selected frag[men](#page-7-0)ts within DFT models. The composition of such sites will be defined by dedicated schematic drawings in the Results and Discussion.

#### ■ RESULTS AND DISCUSSION

Before illustrating our findings, let us point out the details of the nomenclature used in the following. All DFT models will be termed with bold-face lowercase letters in order to distinguish them from experimental counterparts. For the latter, bold-face uppercase letters will be used. Different isomers of the same species will be tagged with progressive numbers, and the overall charge of ionic models will be explicitly shown. In full analogy with the enzyme active site, the metal centers in the diiron subunit of  $A$  will be termed "proximal" or "distal" (Fe<sub>p</sub> or Fe<sub>d</sub>) according to their relative distance with respect to the metallocene fragment. Finally, A features a tertiary amine covalently bound to a benzyl substituent; the benzyl group can reside in the *equatorial* position with respect to the  $N-C_2-S_2-$  Fe<sub>p</sub> ring, as in Scheme 2. The alternative geometry will be referred to as axial.

Scheme 2. Initial Structure for the Geometry Optimization of  $A^a$ 



a Red bonds highlight the equatorial position of the benzyl substituent in this scheme.

Theoretical Results on Structure and Reactivity of the All-Iron Model A and Derivatives. The [FeFe]-hydrogenases model A was experimentally shown to attain the  $Fe(II)$ redox state at the metallocene sandwich, while the diiron fragment was found to enjoy the Fe(I)Fe(I) redox state; in conformity with a previous  $report,$ <sup>14</sup> we will refer to this state as  $Fe(II)Fe(I)Fe(I)$ . Notably, the Fe(I)Fe(I) state is characteristic of t[h](#page-6-0)e  $H_{\text{red}}$  enzyme form, which features a carbonyl in the semibridging position between the metal centers of the diiron unit.<sup>35</sup> However, the IR spectrum of  $A$  does not indicate the presence of semibridging carbonyl groups,<sup>14</sup> meaning that all CO [lig](#page-7-0)ands occupy terminal positions. In order investigate the coordination geometry of A, we carrie[d](#page-6-0) out the energy minimization of a DFT model initially featuring a  $\mu$ -CO group (Scheme 2).

Notably, the  $\mu$ -CO ligand detaches from Fe<sub>p</sub> along relaxation, reaching a 3.34 Å distance from  $Fe<sub>p</sub>$  upon convergence (model a in Figure 3). Overall charge and spin populations of the diiron and metallocene fragments were also computed and reported in Table 1; t[he](#page-3-0)y are consistent with the  $Fe(II)Fe(I)Fe(I)$  state. Model a was also considered for vibrational frequencies calcula[tio](#page-3-0)n: the computed CO vibrational frequencies, scaled according to ref 26 as explained in Methods, are 1959, 1906, and 1896  $cm^{-1}$  (Table 2). They compare well with the intense experimental ba[nds](#page-7-0) at 1958 and 1907 cm<sup>−</sup><sup>1</sup> and with the shoulder observed at 1[89](#page-3-0)7  $\rm cm^{-1}$ . Finally, as far as the geometry of the amine in the pendant is concerned, an isomer of a with the alternative axial position of the benzyl group was also optimized (structure shown in the Supporting Information), and it turned out to be disfavored by 2.9 kcal mol<sup>-1</sup>. .

Exposing A to acids leads to formation of  $A^+ \mu H$ , a bridginghydride compound formally attainin[g](#page-6-0) [the](#page-6-0)  $Fe(II)Fe(II)$  [state](#page-6-0) [a](#page-6-0)t the diiron site. The corresponding DFT model  $(a^+ \mu H, Figr)$ 3) was optimized, and the Mulliken population analysis we performed indicates charge delocalization on the diiron and the [m](#page-3-0)ononuclear fragments (Table 1). Computed vibrational frequencies for  $\mathsf{a}^{\text{+}}$   $\mu\text{H}$  are positioned at 1965, 1970, and 2016 cm<sup>−</sup><sup>1</sup> . The corresponding experim[en](#page-3-0)tal spectrum features only two bands instead (Table 2); the broader and more intense one is at 1973 cm<sup>−</sup><sup>1</sup> , and theory suggests that it originates from superimposition of the tw[o](#page-3-0) bands at lower wavenumbers in our model.

A can also undergo one-electron oxidation giving rise to  $A^+$ , , an adduct featuring a carbonyl ligand in the semibridging position within the diiron portion. The latter attains the  $Fe<sub>p</sub>(II)Fe<sub>d</sub>(I)$  redox state, which is also typical of the H<sub>ox</sub> form

<span id="page-3-0"></span>

Figure 3. Optimized structures of selected triiron models, with relevant bond distances explicitly marked (all values in Angstroms). Atom colors are as follows: Fe, yellow; S, brownish-yellow; P, wheat; C, green; N, light blue; O, red; H, white. (Inset) Generic schematic representation of the models: composition of the diiron and monoiron portions considered for Mulliken population analyses (see Table 1) is highlighted in black and blue, respectively.

Table 1. Overall Mulliken Spin Populations and Charges (the latter in parentheses, expressed in elementary units  $e$ ) of the Mononuclear and Dinuclear Portions of the All-Iron Models

| compound                             | dinuclear portion | mononuclear portion |
|--------------------------------------|-------------------|---------------------|
| a                                    | 0.00(0.07)        | $0.00 (-0.07)$      |
| $a^+ \mu H$                          | 0.00(0.46)        | 0.00(0.54)          |
| $a^+$                                | 0.97(0.95)        | 0.00(0.04)          |
| $a1^{2+}$                            | 0.96(1.11)        | 1.01(0.89)          |
| $a2^{2+}$                            | 0.96(1.09)        | $-1.01(0.91)$       |
| $a^{2+} - 2H$                        | 0.00(1.85)        | 0.00(0.15)          |
| a dtma                               | $0.00 (-0.06)$    | 0.00(0.06)          |
| a dtma <sup>+</sup>                  | 0.96(0.96)        | 0.01(0.04)          |
| a1 $d$ tma <sup>2+</sup>             | 0.97(1.09)        | 1.01(0.91)          |
| $a2 \text{ d} \text{tma}^{2+}$       | 0.97(1.09)        | $-1.01(0.91)$       |
| a dtma <sup>2+</sup> -H <sub>2</sub> | 0.00(1.71)        | 0.00(0.28)          |
| a dtma <sup>2+</sup> -2H             | 0.00(1.80)        | 0.00(0.20)          |
|                                      |                   |                     |

of [FeFe]-hydrogenases.<sup>9</sup> Not differently from the experimental picture, optimization of the cationic model  $a^+$  gives rise to a geometry featuring a C[O](#page-6-0) group in the semibridging position

Table 2. Theoretical Frequencies for CO Stretching Modes in Selected Triiron Models, and Corresponding Experimental Values (in  $\text{cm}^{-1})^{14}$  a

| model                                                                                       | experimental<br>frequencies                      | theoretical frequencies and intensities |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|--|--|--|
| a                                                                                           | 1958, 1907, 1897                                 | 1959 (1540), 1906 (1049), 1896 (814)    |  |  |  |
| $a^+ \mu H$                                                                                 | 1973, 2018                                       | 1965 (254), 1970 (745), 2016 (569).     |  |  |  |
| $a^+$                                                                                       | $2014^b$ , 1963 <sup>b</sup> , 1867 <sup>b</sup> | 1998 (810), 1959 (420), 1871 (1082)     |  |  |  |
| $a1^{2+}$                                                                                   | $2017^b$ , 1967 <sup>b</sup> , 1852 <sup>b</sup> | 2000 (1291), 1965 (411), 1890 (1792)    |  |  |  |
| $a2^{2+}$                                                                                   | $2017^b$ , 1967 <sup>b</sup> , 1852 <sup>b</sup> | 2006 (387), 1968 (397), 1895 (638)      |  |  |  |
| "In parentheses, the computed intensities (in $km \text{ mol}^{-1}$ ). <sup>b</sup> Derived |                                                  |                                         |  |  |  |
| from inspection of the spectra shown in the figures of ref 14.                              |                                                  |                                         |  |  |  |

between Fe<sub>p</sub> and Fe<sub>d</sub> (C−Fe<sub>p</sub> distance 2.51 Å, [Fig](#page-6-0)ure 3). Calculation of overall spin populations and charges of the dinuclear and mononuclear sites shows that the unpaired electron is localized on the former (see Table 1). The metallocene fragment features a zero value for both Mulliken populations instead, as expected for a  $Fe(II)$  redox state. IR and EPR measurements on  $A^+$  indicated that the unpaired electron mostly resides on  $Fe<sub>d</sub>$ ; notably, the computed spin populations of Fe<sub>d</sub> and Fe<sub>p</sub> centers in  $a^+$  are 0.90 and 0.14, respectively, in full agreement with the experimental picture. DFT vibrational frequencies of carbonyl ligands in  $a^+$  are 1998, 1959, and 1871 cm<sup>−</sup><sup>1</sup> . Comparison with the experimental IR absorption (see Table 2) evidences a fairly good match, with deviations in line with those previously reported for variously substituted CObridged and semibridged biomimetic complexes.<sup>26</sup> Finally, it was possible to identify a monocationic isomer featuring equatorial orientation of the benzyl group in [th](#page-7-0)e pendant (structure shown in the Supporting Information), which however is 2.9 kcal mol<sup>−</sup><sup>1</sup> less favored than the axial model in Figure 3.

The second oxidation step [leads](#page-6-0) [to](#page-6-0) [the](#page-6-0) [dicationic](#page-6-0) [spe](#page-6-0)cies  $A^{2+}$ ; the fact that the IR frequencies of the terminal CO groups shift by only  $\sim$ 4 cm<sup>-1</sup> upon  $A^+$  – e<sup>−</sup> →  $A^{2+}$  oxidation indicates that the diiron fragment retains the  $Fe(II)Fe(I)$  state. Therefore, the overall oxidation state of the iron atoms in  $A^{2+}$  is  $Fe(III)$  $Fe(II)Fe(I),$ <sup>14</sup> as anticipated in the Introduction. Variabletemperature magnetic susceptibility measurements demonstrated t[h](#page-6-0)at  $A^{2+}$  has two unpaired electron;<sup>14</sup> [thus, we](#page-0-0) considered both an open shell singlet and a triplet for our  $a^{2+}$  models. Let us start with a description of the triplet [\(m](#page-6-0)odel  $a1^{2+}$ , Figure 3). Comparison between  $a1^{2+}$  and  $a^+$  shows that the scaled DFT frequencies of the terminal COs in  $a1^{2+}$  undergo shifts similar to the experimentally observed ones (Table 2). The semibridging CO frequency is overestimated by 38 cm<sup>−</sup><sup>1</sup> , a value in line with the maximum deviation (36.3 cm<sup>−</sup><sup>1</sup> ) previously reported for other biomimetic  $μ$ -CO species.<sup>26</sup> Overall charges and spin populations of  $a1^{2+}$  are consistent with the  $Fe(III)$  $Fe(II)Fe(I)$  state (see Table 1); in fact, t[he](#page-7-0) charge of the metallocene portion is 1.38 e, and computed spin populations indicate the presence of one unpaired electron at this site. A spin population close to one was computed also for the diiron fragment, with the Fe<sub>d</sub> center contribution being the largest (0.89). Variation in Mulliken charges as a result of the  $a^+ \rightarrow$  $a1^{2+}$  + e<sup>−</sup> oxidation is 1.34 *e* for the mononuclear portion, while a much smaller variation  $(0.33 e)$  was computed for the diiron site. Finally, also in the case of this triplet, it is possible to identify an isomer with equatorial orientation of the benzyl group in the pendant (structure shown in the Supporting Information); such conformation is disfavored with respect to

<span id="page-4-0"></span>the axial model in Figure 3 by 2.5 kcal mol $^{-1}$ , analogously to the case of  $a^+$  (vide supra).

We now focus on t[he](#page-3-0) open-shell singlet  $a2^{2+}$ , a model featuring spin densities with opposite signs at the level of the dinuclear and mononuclear fragments (Table 1). The computed stability difference between  $a2^{2+}$  and  $a1^{2+}$  is close to zero ( $\Delta E = 0.2$  kcal mol<sup>-1</sup> in favor of the former). Moreover, the scaled vibrational frequencies of CO groups in  $a2^{2+}$  $a2^{2+}$  $a2^{2+}$  do not differ by more than 6  $cm^{-1}$  from the corresponding ones in  $a1<sup>2+</sup>$  (see Table 2). Mulliken spin population and charge of the dinuclear portion remain essentially unchanged upon  $a^+ \rightarrow a1^{2+}$ + e<sup>−</sup> oxidation, [as](#page-3-0) the redox process is localized at the level of the mononuclear moiety in our model (Table 1). Finally, the axial position of the pendant in  $a2^{2+}$  is favored over the equatorial counterpart (structure shown in [th](#page-3-0)e Supporting Information) by 3.2 kcal mol<sup>-1</sup>. .

We now turn to the issue of  $H_2$  binding to th[e dicationic](#page-6-0) [species; in fa](#page-6-0)ct, experiments demonstrate that  $A^{2+}$  does interact with dihydrogen by means of its  $Fe<sub>d</sub> center, <sup>14</sup>$  as mentioned above. This triggers one-electron oxidation of the diiron site at the expense of the metallocene sandwich and [co](#page-6-0)ncomitant  $H_2$ splitting. As far as our DFT models are concerned, it is noticeable that energy minimization of a  $Fe(II)Fe(II)Fe(II)$ model with dihydrogen nonclassically bound to Fe<sub>d</sub> leads to cleavage of the H−H bond along optimization. In other words, if one goes downhill on the potential energy surface starting from the geometry represented in Scheme 3 then one observes

Scheme 3. Initial Structure for Geometry Optimization of  $a^{2+}-2H$ 



that one of the two H atoms bound to  $Fe<sub>d</sub>$  remains attached to the metal center while the other one moves from Fe<sub>d</sub> to the amine group of the neighboring pendant. The resulting minimum geometry is shown in Figure 3 (model  $a^{2+}-2H$ ); the same figure also shows the transition state structure for binding of  $H_2$  to the complex (model  $a_{TS}^{2+}-H_2$ ). Notably, the reaction  $a2^{2+} + H_2 \rightarrow a^{2+}-2H$  is associated with a negative energy difference (−2.7 kcal mol<sup>−</sup><sup>1</sup> ) and a low barrier: +7.8 kcal mol<sup>−1</sup>. However, from a mechanistic perspective it is important to underline that  $H_2$  splitting with concomitant proton transfer implies axial to equatorial rearrangement of the benzyl group in the pendant. As the transition state for  $H_2$  attachment to  $Fe<sub>d</sub>$ (see  $a_{TS}^{2+}$ -H<sub>2</sub> in Figure 3) already shows an equatorial position of the benzyl group in the pendant, we conclude that  $H_2$ binding to the model [c](#page-3-0)an occur only after an energetically disfavored axial to equatorial isomerization of  $A^{2+}$ . In view of this, we verified whether targeted structural modification of the dication can lead to stabilization of the equatorial orientation of the bulky group in the pendant. Notably, models featuring substitution of the benzylic position with two methyl groups (see Scheme 4) are such that the axial and equatorial isomers are degenerate (optimized geometries in the Supporting Information).

Comparison between the Reactivity of  $A^{2+}$  and [Structurally](#page-6-0) Related Diiron and Triiron Com[plexes.](#page-6-0) In order to gain further insight into the key topic of  $H_2$  splitting on biomimetic compounds, we extended our investigation to selected models structurally related to  $A^{2+}$ . More specifically, in the following we will consider the diiron complex  $[Fe_2[(SCH_2)_2NH](CO)_3(PMe_3)(dppv)]^+$  which is known to interact and split  $H_2$  under very harsh conditions (model a diiron<sup>+</sup> in Scheme 5) as well as model a  $d$ tma<sup>2+</sup> (Scheme

# Scheme 5. Models a\_diiron $^+$  (on the left) and a\_diiron $^{\mathrm{+}}$ -H<sub>2</sub>



6). The latter is a triiron compound that differs from  $a^{2+}$ because the benzyl group in the pendant is substituted with a [h](#page-5-0)ydrogen atom, thus giving place to a di(thiomethyl)amine





a<br>The axial isomer (on the left) and equatorial one (on the right) were computed to be essentially degenerate both in the triplet and in the singlet states (ΔE < 0.1 kcal mol<sup>-1</sup>; see optimized geometries of models a1\_d**imethyl<sup>2+</sup>, a1′\_dimethyl<sup>2+</sup>, a2\_dimethyl<sup>2+</sup>, and a2′\_dimethyl<sup>2+</sup> in the** Supporting Information).

<span id="page-5-0"></span>Scheme 6. Schematic Structure of Model a dtma<sup>2+</sup>



ligand (dtma). Notably, dtma is the azadithiolate component selected by nature for the enzyme active site.

Let us start by discussing results on the dinuclear compound a\_diiron+ . A relevant structural feature of this compound is the presence of the dtma ligand bridging the Fe centers. Moreover, a diiron<sup>+</sup> lacks any redox-active ligand that can behave as a redox partner for the diiron core. Consequently, the Fe(II)Fe(I) state is retained also after H<sub>2</sub> binding to a diiron<sup>+</sup>, , as intramolecular electron transfer from the diiron site cannot take place in this case. The increase in dihydrogen acidity is therefore not as pronounced as in the case of  $a^{2+}$ , a fact that favors the existence of metal−dihydrogen complexes as minima on the potential energy surface (see model a\_diiron<sup>+</sup>-H<sub>2</sub> in Scheme 5 and Supporting Information). As far as  $H_2$ -binding energies are concerned, the reaction a diiron<sup>+</sup> + H<sub>2</sub>  $\rightarrow$ a\_diiron<sup>+</sup>-H<sub>2</sub> ( $\Delta E = +6.2$  kcal mol<sup>-1</sup>) is significantly less favored than the corresponding reaction taking place on the trinuclear adduct ( $\Delta E = -2.7$  kcal mol<sup>-1</sup>, see above). Finally, notice that  $\mathbf{a}\_\text{diiron}^+$ -H<sub>2</sub> has axial orientation of the NH group in the pendant. Such isomer is the absolute minimum on the potential energy surface, while the alternative isomer  $(a'$ **diiron**<sup>+</sup>- $H_2$ , see Supporting Information) is 0.6 kcal mol<sup>−</sup><sup>1</sup> higher in energy. Notably, previous hybrid quantum mechanical/molecular [mechanical results evide](#page-6-0)nced that  $H_2$ binding to the  $Fe<sub>d</sub>$  center is compatible with a dtma ligand featuring axial orientation of the NH group also in the  $Fe<sub>p</sub>(II)Fe<sub>d</sub>(I) H<sub>ox</sub> state of [FeFe]-hydrogenases.<sup>36</sup>$ 

We now turn to the case of the triiron model  $a_{\text{at}}$  and  $a^{2+}$ .<sup>37</sup> Calculations on this compound and derivatives [wer](#page-7-0)e carried out in order to unveil possible effects of substitution of the benz[yl](#page-7-0)containing dithiolate ligand in  $a^{2+}$  with the naturally occurring dtma. In Figure 4, the optimized geometry of model a1\_dtma<sup>2+</sup> is reported. This is a triplet featuring axial orientation of the NH group in the pendant, which is 2.7 kcal mol<sup>-1</sup> more stable than the equatorial isomer (model  $a1'$  dtma<sup>2+</sup>, structure shown in the Supporting Information). Similar results were obtained when comparing the open-shell species  $a2_d$  dtma<sup>2+</sup> and  $a2'$  dtma<sup>2+</sup> [\(structures shown](#page-6-0) in the Supporting Information): the former is the model with an axial NH group, 2.9 kcal mol<sup>-1</sup> more stable than the latter w[hich features](#page-6-0) [the equatori](#page-6-0)al orientation of the amine. Such energy differences are very close to the ones above reported for the axial to equatorial rearrangement in  $a1^{2+}$  and  $a2^{2+}$ . Another analogy with the benzyl-containing model is that interaction between  $H_2$  and the Fe<sub>d</sub> center triggers axial to equatorial rearrangement also of the dtma amine group. The  $H_2$ -bound model (a\_dtma<sup>2+</sup>-H<sub>2</sub>, Figure 4) features a Fe<sub>p</sub>(II)Fe<sub>d</sub>(II) state of the diiron site and  $Fe(II)$  state at the metallocene, as indicated by the overall Mulliken charges of the two portions of the model (1.71 and 0.28 e respectively, values very close to the ones reported for model  $a^{2+}-2H$ ; see Table 1). However, a dtma<sup>2+</sup>- $H_2$  features nonclassical coordination of  $H_2$  to Fe<sub>d</sub>, at variance with the case of dihydrogen binding [to](#page-3-0) the benzyl-containing



Figure 4. Optimized structures of selected triiron models, with relevant bond distances explicitly marked (all values in Angstroms). Color code is the same as in Figure 3. (Inset) Schematic representation of the models: composition of the diiron and monoiron portions considered for Mulliken population a[na](#page-3-0)lyses (see Table 1) is highlighted in black and blue, respectively.

model (see above). Such result is in line with the experimental observation that replacement of the benzyl-containing azadithiolate with dtma significantly reduces the reactivity of bioinspired complexes, as hydride formation in the presence of  $H_2$  takes place less efficiently in the latter case.<sup>22</sup> The transition state structure for  $H_2$  splitting as well as the corresponding product were also localized (see  $a_{\text{at}}$  atm $a_{\text{TS}}^{2+}$ -H<sub>2</sub> and  $a_{\text{at}}$  and  $a_{\text{at}}^{2+}$ -2H in Figure 4). The reaction barrier turned out to be as low as 3.2 kcal mol<sup>−</sup><sup>1</sup> , and the product is 1.3 kcal mol<sup>−</sup><sup>1</sup> higher in energy than the reactant.

### ■ **CONCLUSIONS**

Using density functional theory for characterization of vibrational properties and intramolecular redox events in hydrogenases models, we deepened insights into the remarkable capacity of the triiron complex A to mimic the fundamentals of [FeFe]-hydrogenases chemistry. Theoretical data are consistent with the overall experimental picture, indicating that A is able to combine substrate binding, redox, and acid–base functionalities. The  $A^{2+}$  isomer competent for  $H<sub>2</sub>$  binding turned out to correspond to a local minimum on the potential energy surface (see Scheme 7); notably,  $H_2$ coordination and splitting take place concomitantly on such form of the synthetic catalyst. In fact, the pre[se](#page-6-0)nce of a benzyl moiety at the pendant amine enhances basicity of the latter, thus favoring heterolytic  $H_2$  splitting. On the other hand, the same bulky group impedes  $H_2$  uptake when  $A^{2+}$  is in its global minimum.  $A^{2+}$  also was unable to form a transient dihydrogen complex, at variance with the case of the enzyme active site.<sup>38</sup> In this respect, DFT modeling showed that energy minima featuring side-on coordination of  $H_2$  on Fe<sub>d</sub> exist also in t[he](#page-7-0) case of a triiron model strictly related to  $A^{2+}$  but featuring a di(thiomethyl)amine bridge in place of the benzyl-substituted dithiolate. A dihydrogen complex was localized also on the

<span id="page-6-0"></span>Scheme 7. Mechanistic Picture on  $H_2$  Binding and Splitting at the [FeFe]-Hydrogenase Model a, Based on DFT Results



potential energy surface of a previously synthesized diiron compound capable of  $H_2$  splitting.

As a whole, our results confirm that targeted application of DFT-based approaches leads to a [sa](#page-7-0)tisfactory description not only of the vibrational properties of hydrogenases models<sup>26</sup> but also of their substrate-dependent redox reactivity.<sup>19</sup>

# ■ ASSOCIATED CONTENT

### **S** Supporting Information

Figures with optimized structures of selected models, Mulliken spin populations of metal ions in selected complexes, discussion of structure and reactivity of additional models cited in the paper main text, Cartesian coordinates of the optimized structures illustrated in the figures and schemes. This material is available free of charge via the Internet at http://pubs.acs.org.

# ■ AUTHOR INFORMATION

# Corresponding Author

\*Phone: +390264482098. E-mail: claudio.greco@unimib.it.

# Notes

The authors declare no competing fi[nancial interest.](mailto:claudio.greco@unimib.it)

# ■ ACKNOWLEDGMENTS

Financial support of this work from the Cluster of Excellence "Unifying Concepts in Catalysis" (Berlin) is gratefully acknowledged.

# ■ REFERENCES

(1) Cammack, R.; Frey, M.; Robson, R. Hydrogen as a Fuel: Learning from Nature; Taylor & Francis: London and New York, 2001. Hoffmann, P. Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet; The MIT Press: Cambridge, 2002. Coontz, R.; Hanson, B. Science 2004, 305, 957.

(2) Vignais, P. M.; Billoud, B. Chem. Rev. 2007, 107, 4206. Friedrich, B.; Fritsch, J.; Lenz, O. Curr. Opin. Biotechnol. 2011, 22, 358. Gordon, J. C.; Kubas, G. J. Organometallics 2010, 29, 4682. Wright, J. A.; Turrell, P. J.; Pickett, C. J. Organometallics 2010, 29, 6146. Thauer, R. K.; Kaster, A.-K.; Goenrich, M.; Schick, M.; Hiromoto, T.; Shima, S. Annu. Rev. Biochem. 2010, 79, 507.

(3) Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. Science 2008, 321, 572.

(4) Frey, M. ChemBioChem 2002, 3, 153.

(5) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853.

(6) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure 1999, 7, 13.

(7) Pandey, A. S.; Harris, T. V.; Giles, L. J.; Peters, J. W.; Szilagyi, R. K. J. Am. Chem. Soc. 2008, 130, 4533.

(8) Erdem, O. F.; Schwartz, L.; Stein, M.; Silakov, A.; Kaur-Ghumaan, S.; Huang, P.; Ott, S.; Reijerse, E. J.; Lubitz, W. Angew. Chem., Int. Ed. 2011, 50, 1439. Silakov, A.; Wenk, B.; Reijerse, E.; Lubitz, W. Phys. Chem. Chem. Phys. 2009, 11, 6592. Ryde, U.; Greco, C.; De Gioia, L. J. Am. Chem. Soc. 2010, 132, 4512.

(9) Lubitz, W.; Reijerse, E.; van Gastel, M. Chem. Rev. 2007, 107, 4331.

(10) Greco, C.; Bruschi, M.; Fantucci, P.; Ryde, U.; De Gioia, L. J. Am. Chem. Soc. 2011, 133, 18742.

(11) Bruschi, M.; Greco, C.; Kaukonen, M.; Fantucci, P.; Ryde, U.; De Gioia, L. Angew. Chem., Int. Ed. 2009, 48, 3503.

(12) Fritsch, J.; Scheerer, P.; Frielingsdorf, S.; Kroschinsky, S.; Friedrich, B.; Lenz, O.; Spahn, C. M. T. Nature 2011, 479, 249.

(13) Si, Y. T.; Charreteur, K.; Capon, J. F.; Gloaguen, F.; Petillon, F.

Y.; Schollhammer, P.; Talarmin, J. J. Inorg. Biochem. 2010, 104, 1038. (14) Camara, J. M.; Rauchfuss, T. B. Nat. Chem. 2012, 4, 26.

(15) Liu, Y. C.; Lee, C. H.; Lee, G. H.; Chiang, M. H. Eur. J. Inorg. Chem. 2011, 1155. de Hatten, X.; Bothe, E.; Merz, K.; Huc, I.; Metzler-Nolte, N. Eur. J. Inorg. Chem. 2008, 4530. Tard, C.; Liu, X. M.; Ibrahim, S. K.; Bruschi, M.; De Gioia, L.; Davies, S. C.; Yang, X.; Wang, L. S.; Sawers, G.; Pickett, C. J. Nature 2005, 433, 610. Schwab, D. E.; Tard, C.; Brecht, E.; Peters, J. W.; Pickett, C. J.; Szilagyi, R. K. Chem. Commun. 2006, 3696.

(16) Topf, C.; Monkowius, U.; Knor, G. Inorg. Chem. Commun. 2012, 21, 147.

(17) Bott, S. G.; Yang, K. Y.; Richmond, M. G. J. Organomet. Chem. 2006, 691, 3771. Yang, K. Y.; Smith, J. M.; Bott, S. G.; Richmond, M. G. Organometallics 1993, 12, 4779. Yang, K. Y.; Bott, S. G.; Richmond, M. G. Organometallics 1995, 14, 2387. Yang, K. Y.; Bott, S. G.; Richmond, M. G. J. Organomet. Chem. 1996, 516, 65. Kandala, S.; Hammons, C.; Watson, W. H.; Wang, X. P.; Richmond, M. G. Dalton

<span id="page-7-0"></span>Trans. 2010, 39, 1620. Mao, F.; Tyler, D. R.; Keszler, D. J. Am. Chem. Soc. 1989, 111, 130. Tyler, D. R. Acc. Chem. Res. 1991, 24, 325.

- (18) Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245. Thomas, C. M.; Liu, T. B.; Hall, M. B.; Darensbourg, M. Y. Inorg. Chem. 2008, 47, 7009. Wang, N.; Wang, M.; Zhang, T. T.; Li, P.; Liu, J. H.; Sun, L. C. Chem. Commun. 2008, 5800. Ezzaher, S.; Capon, J. F.; Dumontet, N.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J. J. Electroanal. Chem. 2009, 626, 161. van der Vlugt, J. I.; Rauchfuss, T. B.; Whaley, C. M.; Wilson, S. R. J. Am. Chem. Soc. 2005, 127, 16012. Chen, Z. J.; Lemon, B. J.; Huang, S.; Swartz, D. J.; Peters, J. W.; Bagley, K. A. Biochemistry 2002, 41, 2036. Olsen, M. T.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 2010, 132, 17733. Cheah, M. H.; Borg, S. J.; Best, S. P. Inorg. Chem. 2007, 46, 1741.
- (19) Greco, C.; De Gioia, L. Inorg. Chem. 2011, 50, 6987.
- (20) Liu, Y. C.; Yen, T. H.; Tseng, Y. J.; Hu, C. H.; Lee, G. H.; Chiang, M. H. Inorg. Chem. 2012, 51, 5997.
- (21) Camara, J. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2011, 133, 8098.
- (22) Olsen, M. T.; Barton, B. E.; Rauchfuss, T. B. Inorg. Chem. 2009, 48, 7507.
- (23) Darensbourg, M. Y.; Bethel, R. D. Nat. Chem. 2012, 4, 11.
- (24) Bertini, L.; Greco, C.; Bruschi, M.; Fantucci, P.; De Gioia, L.
- Organometallics 2010, 29, 2013. Bertini, L.; Greco, C.; De Gioia, L.; Fantucci, P. J. Phys. Chem. A 2009, 113, 5657.
- (25) Greco, C.; Bruschi, M.; Fantucci, P.; De Gioia, L. Eur. J. Inorg. Chem. 2007, 1835.
- (26) Yu, L.; Greco, C.; Bruschi, M.; Ryde, U.; De Gioia, L.; Reiher, M. Inorg. Chem. 2011, 50, 3888.
- (27) Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Chem. Phys. Lett. 1989, 162, 165.
- (28) Becke, A. D. Phys. Rev. A 1988, 38, 3098. Perdew, J. P. Phys. Rev. B 1986, 33, 8822. Eichkorn, K.; Treutler, O.; Ohm, H.; Haser, M.; Ahlrichs, R. Chem. Phys. Lett. 1995, 240, 283. Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119. Schafer,
- A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.
- (29) Greco, C.; Bruschi, M.; Fantucci, P.; De Gioia, L. J. Organomet. Chem. 2009, 694, 2846.
- (30) Young, D. Computational Chemistry; John Wiley & Sons: New York, 2001.
- (31) Greco, C.; Zampella, G.; Bertini, L.; Bruschi, M.; Fantucci, P.; De Gioia, L. Inorg. Chem. 2007, 46, 108.
- (32) Noodleman, L.; Norman, J. G. J. Chem. Phys. 1979, 70, 4903. Noodleman, L. J. Chem. Phys. 1981, 74, 5737. Greco, C.; Fantucci, P.; Ryde, U.; de Gioia, L. Int. J. Quantum Chem. 2011, 111, 3949.
- (33) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (34) Matito, E.; Sola, M. Coord. Chem. Rev. 2009, 253, 647. Duclusaud, H.; Borshch, S. A. J. Am. Chem. Soc. 2001, 123, 2825. Poblet, J. M.; Lopez, X.; Bo, C. Chem. Soc. Rev. 2003, 32, 297.
- (35) Nicolet, Y.; de Lacey, A. L.; Vernede, X.; Fernandez, V. M.; Hatchikian, E. C.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 2001, 123, 1596.
- (36) Greco, C.; Bruschi, M.; De Gioia, L.; Ryde, U. Inorg. Chem. 2007, 46, 5911.
- (37) In principle, a  $d$ tma<sup>2+</sup> could be obtained by two subsequent one-electron oxidations of the corresponding neutral model. Therefore, we optimized also the neutral and monocationic models a\_dtma and a dtma<sup>+</sup> (structures not shown), and in Table 1 we report Mulliken spin populations and charges for the mononuclear and dinuclear portions that compose such models. Results [in](#page-3-0)dicate that a dtma and a dtma<sup>+</sup> attain the  $Fe(II)Fe(I)Fe(I)$  and  $Fe(II)Fe(II)$  $Fe(I)$  redox states, respectively, analogously to the case of a and  $a^+$ . .
- (38) Bruschi, M.; Zampella, G.; Fantucci, P.; De Gioia, L. Coord. Chem. Rev. 2005, 249, 1620.